Advanced Photon Source Storage Ring Orbit Correction Overview

L. Emery December 4th, 2002

Overview

- Fast orbit feedback (RTFS) and slow orbit feedback (DC OC) running together.
- Seek to correct:
 - Orbit drift (i.e. perturbation from IDs)
 - High frequency noise (corrector noise)
 - Transients (i.e. from pulsed magnets)
- Other:
 - Steering procedure for User source points
 - Orbit recovery from lattice change

Data Requested

- One day stability of orbit.
- Power spectrum density (PSD).
- Quantitative effect of each improvement.
 - Not complete.
- Stability improvement observed by users.
 - No data available to accelerator control system.
 Informal statements from users say that most stability improvement comes from constant stored current.

One-Day Stability

Since DC OC is running continuously, the orbit stays close.

- Following figures show basically the same data with various axes and scales, including requested 0.1 Hz 200 Hz.
- Data taken with fast feedback running, slow orbit correction running at interval 0.1 sec or other value.

Routine archive plot:

Effect of DC OC interval:

Cumulative RMS of previous figure:

Beam Motion RMS

Real-time calculation of RMS in three bands simultaneously

Beam Motion RMS

Data logger has similar data but with peak-hold of 60 seconds.

Features of DC OC System

- Flexibility in configuration and sophisticated database for bpm setpoints, offsets, correction configurations for various focusing lattices.
- Low-pass filtering of bpms.
- Testing of quantities for valid conditions.
- Despiking to remove bad bpms.
- Intensity-dependent component to bpm offsets.

Features of DC OC

- Frequency overlap compensation.
- Xray bpms included in y-plane.
- Almost ready to run OC in EPICS ioc for 15x speed.

Fast Orbit Correction

- Wide band correction (~50 Hz) but with fewer correctors and bpms (i.e. reduced spatial modes.)
- All bpms including Xray bpms will soon be available.
- Configured with the same tools as DC OC.

- Ground motion and cooling water
 - In 1995, reduced by damping pads and by lowering of cooling water flow, and by making pipes more rigid. No rms beam motion data.
- ID gap motion.
 - 50 micron DC orbit for worst offender, 100 microns for all IDs closing together. O. Singh has data.

Reduction of RMS motion with reduction of DC OC interval.

- Corrector power supplies.
 - In 1 Hz-400 Hz band, 38 "fast" correctors produce more noise (3 microns), than 262 "slow" correctors (1.5 microns).
 - As "bad correctors" get replaced, RMS motion over the years has decreased.
- Low-α_c rings are good detectors of earthquakes! Possible to setup data collection for very small (<1 micron) circumference change at time scales of interest.

Effect of running 38 "fast" correctors at 0 A:

Effect of running 38 "fast" correctors at 0 A:

Effect of running 262 "slow" correctors at 0 A:

Effect of running 262 "slow" correctors at 0 A:

Rogue HOM in Vacuum Chamber

- In v-plane, weakly coupled HOM causes sudden jumps in bpm readback (10 microns-100 microns) in most bpms.
- Despiking doesn't work because there are too many bad bpms.
- Narrowband bpms not affected -> use mostly Nb bpms and Xray bpms for vertical OC.

Frequency Band Overlap Compensation

- Separating frequency bands of RTFS and DC OC produces undesirable deadband where ID perturbation is seen.
- Overlap of band produce slow (1 minute) orbit oscillation.
- Solution is feedforward of bpm septoints to RTFS with expected orbit contribution from DC OC.

Overlap Compensation

Overlap Compensation

Operation of Pulsed Undulator

- Orbit transient from polarity switch, which lasts ~40 ms, can be corrected with small correctors and AFGs.
- Used RTFS for data acquisition, and for some computations.
- Note photon beam is not compensated.
- Circularly Polarized Undulator is almost ready for pulsed User operations.

Summary

- Large effort to reduce orbit motion by active correction.
- Orbit noise source not agressively pursued at this point.